Abaci Structures of (s, ms\pm1)-Core Partitions
نویسندگان
چکیده
We develop a geometric approach to the study of (s,ms−1)-core and (s,ms+1)core partitions through the associated ms-abaci. This perspective yields new proofs for results of H. Xiong and A. Straub (originally proposed by T. Amdeberhan) on the enumeration of (s, s + 1) and (s,ms− 1)-core partitions with distinct parts. It also enumerates the (s,ms+1)-cores with distinct parts. Furthermore, we calculate the size of the (s,ms − 1,ms + 1)-core partition with the largest number of parts. Finally we enumerate self-conjugate core partitions with distinct parts. The central idea throughout is that the ms-abaci of largest (s,ms ± 1)-cores can be built up from s-abaci of (s, s± 1)-cores in an elegant way.
منابع مشابه
4−core Partitions and Class Numbers
Let Ct(n) denote the number of t−core partitions of n, where a partition is a t−core if none of the hook numbers of the associated Ferrers-Young diagram are multiples of t. It is well known that t−cores describe the local-global behavior of representations of many finite groups, and are important for special cases of the Ramanujan congruences for the ordinary partition function. We show that th...
متن کاملA Combinatorial Proof of a Relationship Between Maximal $(2k-1, 2k+1)$-Cores and $(2k-1, 2k, 2k+1)$-Cores
Integer partitions which are simultaneously t–cores for distinct values of t have attracted significant interest in recent years. When s and t are relatively prime, Olsson and Stanton have determined the size of the maximal (s, t)-core κs,t. When k > 2, a conjecture of Amdeberhan on the maximal (2k − 1, 2k, 2k + 1)-core κ2k−1,2k,2k+1 has also recently been verified by numerous authors. In this ...
متن کاملk-Efficient partitions of graphs
A set $S = {u_1,u_2, ldots, u_t}$ of vertices of $G$ is an efficientdominating set if every vertex of $G$ is dominated exactly once by thevertices of $S$. Letting $U_i$ denote the set of vertices dominated by $u_i$%, we note that ${U_1, U_2, ldots U_t}$ is a partition of the vertex setof $G$ and that each $U_i$ contains the vertex $u_i$ and all the vertices atdistance~1 from it in $G$. In this ...
متن کاملCore partitions into distinct parts and an analog of Euler's theorem
A special case of an elegant result due to Anderson proves that the number of (s, s + 1)-core partitions is finite and is given by the Catalan number Cs. Amdeberhan recently conjectured that the number of (s, s + 1)-core partitions into distinct parts equals the Fibonacci number Fs+1. We prove this conjecture by enumerating, more generally, (s, ds− 1)-core partitions into distinct parts. We do ...
متن کاملBlock inclusions and cores of partitions
Necessary and sufficient conditions are given for an s-block of integer partitions to be contained in a t-block. The generating function for such partitions is found analytically, and also bijectively, using the notion of an (s, t)-abacus. The largest partition which is both an s-core and a t-core is explicitly given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electr. J. Comb.
دوره 24 شماره
صفحات -
تاریخ انتشار 2017